Journal of Organometallic Chemistry, 209 (1981) 115–121 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

COMPARISON OF ORGANO-NICKEL(II), -PALLADIUM(II) AND -PLATINUM(II) COMPLEXES

II *. PREPARATION AND ACIDITIES OF CATIONIC CYCLIC ALKYL(ALKOXY)CARBENE COMPLEXES

MASANORI WADA *, YUKIYOSHI KOYAMA and KENJI SAMESHIMA Department of Petroleum Chemistry, Osaka University, Suita, Osaka 565 (Japan) (Received September 8th, 1980)

Summary

Five- and six-membered α -alkoxyvinylmetal(II) complexes of type trans-C₆Cl₅M(PPhMe₂)₂C=CH(CH₂)_nO (abbr. [M]-C=CH(CH₂)_nO, where M = Ni, Pd, Pt; n = 2 and 3), were prepared by the reaction of [M]-Cl and Li-C=CH(CH₂)_nO, and were treated with perchloric acid to give cationic five- and six-membered cyclic alkyl(alkoxy)carbene complexes, [M]-+CCH₂(CH₂)_nOClO₄⁻. The relative Brønsted acidity of [M]-+CCH₂(CH₂)_nO followed the order M = Ni < Pd > Pt and [M]-+CCH₂CH₂CH₂CO < [M]-+C(OMe)Me < [M]-+CCH₂CH₂CH₂CH₂O.

Introduction

Recently, we have prepared and compared the properties of a series of α -methoxyvinylmetal(II) complexes of type trans-C₆Cl₅M(PPhMe₂)₂C(OMe)= CH₂, and the corresponding cationic methyl(methoxy) carbene complexes, trans-[C₆Cl₅M(PPhMe₂)₂ {C(OMe)Me}]⁺, where M = Ni^{II}, Pd^{II} and Pt^{II} [1]. These two types of complexes are related to each other by facile and reversible protonation, and, at the same time, these carbon ligands are representative of the lowest and the highest π -accepting carbon ligands, respectively [2,3]. In this report [1], we compared the relative Brønsted acidities of these carbone complexes, and discussed the M—C bonding properties of these two series of complexes based on spectral data. The present paper is concerned with analogous work on two systems which have a cyclic carbon ligand coordinated to the cationic trans-C₆Cl₅M(PPhMe₂)₂ moieties (abbr. [M]—, where M = Ni, Pd, Pt). In these cyclic carbon ligand systems there is a greater stereochemical resem-

* For part I see ref. 1.

blance between the vinyl and the carbene complexes than in the previous system. In the latter, the carbene ligand had no rotational freedom about the M-C(carbene) and the C(carbene)-O bonds, while the corresponding bonds of vinyl complexes had rotational freedom.

Results and discussion

Preparation of complexes

In analogy with methyl vinyl ether [1], 2,3-dihydrofuran was lithiated with n-butyllithium in tetrahydrofuran. Treatment of the lithium reagent with [M]—Cl afforded the expected dihydrofuryl complexes, [M]—C=CHCH₂CH₂O (eq. 1; n = 2). Using 2,3-dihydropyran in place of 2,3-dihydrofuran, the dihydropyranyl complexes, [M]—C=CHCH₂CH₂CH₂O, also could be obtained (eq. 1; n = 3).

$$[M] - Cl \xrightarrow{\text{Li} - \overleftarrow{C} = CH(CH_2)_n \overrightarrow{O}} [M] - \overleftarrow{C} = CH(CH_2)_n \overrightarrow{O}$$
(1)

$$[M] - \overleftarrow{C} = CH(CH_2)_n \overrightarrow{O} \xleftarrow{aq. HClO_4}{NEt_3} [M] - \overleftarrow{CCH_2(CH_2)_n OClO_4}^{-}$$
(2)

 $[M] = trans-C_6Cl_5M(PPhMe_2)_2 - (M = Ni, Pd, Pt); n = 2 and 3.$

When ethereal solutions of these vinyl complexes were treated with 60% aqueous perchloric acid, the corresponding cationic cyclic alkyl(alkoxy)carbene complexes, $[M] \xrightarrow{+} CCH_2(CH_2)_n OCIO_4^-$, precipitated and were isolated in good yield (eq. 2). $[Ni] \xrightarrow{+} CCH_2CH_2CH_2CH_2OCIO_4^-$ had been prepared previously by the reaction of $[Ni] \xrightarrow{-} CCH_2CH_2CH_2OH$ and aqueous perchloric acid [2], but analogous treatment of $[Pd] \xrightarrow{-} C \equiv CCH_2CH_2CH_2OH$ resulted in the cleavage of the Pd—C bond [1]. In contrast to the five-membered cyclic alkyl(alkoxy)carbene complexes, six-membered cyclic carbene complexes are quite uncommon. trans- $[(\underline{\eta}^5-C_5H_5)Mo(CO)_2(PPh_3)(CCH_2CH_2CH_2CH_2O)]^+$ [4] and cis-Mn(CO)₄(I)-(CCH_2CH_2CH_2CH_2O) [5] have been prepared by intramolecular cyclization of ω -haloacylmetal intermediates.

As was found for [M]—⁺C(OMe)Me complexes [1,2], treatment of [M]— ⁺CCH₂(CH₂)_nO complexes with triethylamine resulted in the recovery of [M]—C=CH(CH₂)_nO complexes (eq. 2). The C(carbene)—CH₂ resonance in the ¹H NMR spectra of [M]—⁺CCH₂(CH₂)_nO complexes in dichloromethane solution readily disappeared on addition of an excess of CH₃OD due to H—D exchange. The vinyl complexes also showed analogous H—D exchange of the vinyl proton.

Brønsted acidities of cationic cyclic alkyl(alkoxy)carbene complexes

The relative acidities of [M]—^{*}CCH₂(CH₂)_nO complexes (eq. 3) were determined essentially by the same procedure [1] * using ¹H NMR spectroscopy. The results are summarized in Table 1, which also includes the data reported

^{*} Closely related work has been reported by Casey et al. for $(CO)_5Cr{C(OMe)Me}$ [6] and $(CO)_5Cr{CCHRCH_2CH_2O}$ [7], which are as acidic as *p*-cyanophenol ($pK_a = 8$).

TABLE 1

C(OR')R	M =	Ni	Pd	Pt	
C(OMe)Me		1.0 ^b	13.2 ^c	0.94 ^c	
CCH2CH2CH2O		0.15	1.1	0.18	
CCH2CH2CH2CH2O		19	330	14	

RELATIVE BRØNSTED ACIDITIES ^a OF THE CATIONIC ALKYL(ALKOXY)CARBENE COM-PLEXES trans- $[C_6Cl_5M(PPhMe_2)_2 \{C(OR')R\}]CIO4$

^a Represented in the equilibrium constant of the reaction shown in eq. 4 in CD_2CI_2 . ^b This complex has about the same pK_a as the conjugate acids of triethanol amine or 2,4,6-trimethylpyridine [2].

^c These data have been reported previously [1].

previously for the [M]—⁺C(OMe)Me complexes [1].

$$[M] - \stackrel{+}{\leftarrow} \stackrel{C}{\leftarrow} \stackrel{C}{\leftarrow} \stackrel{M'}{=} - C(OMe) = CH_2 \stackrel{K}{\leftarrow}$$
$$[M] - \stackrel{C}{\leftarrow} \stackrel{C}{=} \stackrel{C}{\leftarrow} \stackrel{C}{\leftarrow} \stackrel{M'}{=} \stackrel{-}{\leftarrow} C(OMe)Me$$
(3)

As is seen from Table 1, the metal dependence of the acidities is quite similar among these three series of carbene complexes, palladium complexes showing the highest acidity, and nickel and platinum complexes being comparable in acidity. The carbene dependence of the acidity is in the order of $CCH_2CH_2CH_2O < C(OMe)Me < CCH_2CH_2CH_2CH_2O$ for all the three metal series. The lowest acidity of $[M]^{-+}CCH_2CH_2CH_2O$ seems to be correlated to the high stability of organic compounds of type, $R^{-+}CCH_2CH_2CH_2O$ [8].

IR and NMR spectra

The IR and ¹H NMR spectral data are shown in Table 2. $[M] - C = CH(CH_2)_n O$ complexes displayed in the IR spectra a characteristic $\nu(C=C)$ band. The frequency increased in the same order, Ni < Pd < Pt, as was found for M-C-(OMe)=CH₂ complexes [1]. An analogous progressive increase was observed for the $\nu(C-O)$ band. The O-CH₂ proton and the P-CH₃ proton resonances in the ¹H NMR spectra of $[M] - C = CH(CH_2)_n O$ complexes are magnetically shielded in the order of Ni > Pd > Pt. In such ways we again observed no peculiarity of palladium in the spectral data of $[M] - C = CH(CH_2)_n O$ complexes, and these data are in accord with the fact that the M-C bond is polarized in the order of Ni > Pd > Pt, which parallels the relative electronegativities of these +2 metal ions [9] and explains the lower acidity of nickel complexes vs. those of palladium.

The P-CH₃ protons of [M]-+CCH₂(CH₂)_nO complexes also are magnetically shielded in the order Ni > Pd > Pt, while a reverse order of shielding effect by the metal was observed for the C(carbene)-CH₂ proton resonance of [M]-+CCH₂CH₂CH₂O, and an order of Ni < Pd > Pt was observed for most of the other carbene protons in [M]-+CCH₂(CH₂)_nO series. The pronounced shielding effect by platinum is in agreement with our previous results for [M]-+C(OMe)-Me complexes [1], due to extensive d_{π} - p_{π} back bonding from the metal to the carbene carbon atom.

Con	nplex n	Assignment	M = Ni	Pđ	Pt
1	2	ν(C=C)	1550s	1565s	1570s
			(1561m)	(1569m)	(1573m)
		$\nu(COC)$	1005s	1008s	1010s
			(1007s)	(1012s)	(1018s)
		δ(PCH3)	1.45t [7.5]	1.51t [7.1]	1.64tt [34.4][7.1]
		δ(C=CH)	4.26qn [2.5][2.5]	4.28qn [2.0][2.0]	4.20m [2.4]
		$\delta(CH_2CH_2O)$	2.22m	2.28m	2.28m
		δ(CH ₂ O)	3.64t [9.1]	3.86t [9.4]	3.88¢ [9.1]
I	3	ν(C=C)	15865	1596s	1600s
			(1584s)	(1592s)	(1594s)
		ν(COC)	10435	1040s	1040s
		-	(1035s)	(1036s)	(1040s)
		δ(PCH3)	1.49t [7.5]	1.55t [6.9]	1.65tt [35.2][7.4]
		δ(C=CH)	4.07m	4.07m	4.07br
		$\delta(CH_2O)$	3.41t [5.2]	3.60t [5.2]	3.65t [5.0]
		$\delta(CH_2CH_2O)$	1.78m	1.75m	overlapped
11	2	δ(PCH ₃)	1.56t [8.4]	1.59t [7.9]	1.70tt [34.5][8.6]
		$\delta(^{+}CCH_{2})$	2.88t [7.9]	2.72t [8.1]	2.34t [7.7]
		δ(CH ₂ CH ₂ O)	1.14qn [7.9]	1.33qn [8.1]	1.33qn [7.7]
		$\delta(CH_2O)$	4.64tt [7.9][1.0]	4.83t [8.1]	4.70tt [8.4][7.7]
п	3	δ(PCH3)	1.54br	1.57t [7.8]	1.68tt [33.9][8.0]
		$\delta(^{+}CCH_{2})$	2.60m	2.64m	2.25m
		$\delta(CH_2O)$	4.38br	4.48br	4.37br
		$\delta(CH_2CH_2O)$	1.19 qn [6.5]	1.28qn [6.4]	1.24qn [6.5]
		$\delta(CH_2CH_2CH_2O)$	0.71qn [6.5]	0.88qn [6.4]	0.88qn [6.5]

IR (cm ⁻¹) ^a AND ¹ H NMR (ppm)	^b SPECTRAL DATA FOR	[M]-C=CH(CH2)nO (1) AND
[M]-+CCH2(CH2),OCIO4- (II) ([$M] - = trans - C_6 Cl_5 M(PPhM)$	e ₂) ₂ -) ^c

^a In Nujol mull. The dichloromethane solution data are shown in parentheses, ^b In dichloromethane. The coupling constants, J(P), J(H) and J(Pt), are shown in brackes in Hz. ^c Some data for nickel complexes have been reported in ref. 2. ^d The other CH₂ resonances were obscured by P—CH₃ resonance.

The ¹H NMR spectrum in the P—CH₃ proton resonance region of [Ni]— C=CHCH₂CH₂CH₂O is temperature-dependent, exhibiting a doublet with shoulders on both sides at low temperatures. The observation can be explained in terms of hindered rotation about the Ni—C bond, which generates diastereomeric methyl groups on the phosphine ligand. The coalescence temperature was -39° C, and the rotational barrier (ΔG_{234}^{\neq}) was calculated to be 11.8 kcal/mol. In the spectra of the palladium and platinum complexes, we observed no clear evidence for such hindered rotation down to -80° C, probably due to their larger covalent radii. An analogous temperature dependence of the ¹H NMR spectrum has been reported for the [Ni]—*CCH₂CH₂CH₂O complex [2]. The spectrum of [Ni]—*CCH₂CH₂CH₂CH₂O is also temperature dependent with a coalescence temperature of 15°C, from which a rotational barrier (ΔG_{288}^{\neq}) of 14.4 kcal/mol could be calculated.

TABLE 2

TABLE 3

Complexes	Assignments	M = Ni	Pd	Pt
[M]-C=CHCH2CH2O	δ(M-C)	174.2t [48.7]	171.9t [24.9]	164.9t [20.6]
	δ (C=CH)	105.7t [8.8]	103.2t [12.5]	102.6tt [92.7][8.1]
	δ(OCH ₂)	68.5s	68.8s	68.5t [47.1]
	$\delta(CH_2CH_2O)$	31.3s	30.9s	31.5t [35.3]
	δ(P-CH ₃)	13.3t [29.4]	13.9t [30.1]	13.43tt [44.1][37.5]
[M]-+CCH2CH2CH2O	δ(M— ⁺ C)	322.6t [45.6]	316.4t [20.6]	295.6t [17.6]
	δ(M— ⁺ C—CH ₂)	55.0s	57.0s	57.5s
	$\delta(O-CH_2)$	91.0s	92.1s	90.2t [57.4]
	$\delta(CH_2CH_2O)$	19.4s	19.1s	19.7t [17.6]
	δ(PCH ₃)	12.7t [32.4]	13.3t [32.4]	13.1tt [39.7][39.7]
	$\Delta\delta(M-C)$	148.4	144.5	130.7
	$\Delta \delta$ (MCC)	51.4	-48.2	-46.8
	$\Delta \delta (O - CH_2)$	22.5	23.3	21.7
	$\Delta\delta(CH_2CH_2O)$	11.9	11.8	-11.8
	$\Delta \delta (P - CH_3)$	-0.6	0.6	0.3

THE RELEVANT ¹³C {H} NMR SPECTRAL DATA (ppm) ^a FOR [M]- $C=CHCH_2CH_2O$ AND [M]- $+CCH_2CH_2OCIO_4^-$ ([M]- = trans-C₆Cl₅M(PPhMe₂)₂-) IN CD₂Cl₂

^a The coupling constants, J(P) and J(Pt), are shown in parentheses in Hz.

with the high concentration of positive charge on the carbon atom. The shielding difference values, $\Delta\delta$, which also are shown in the Table, decrease in the order of Ni \geq Pd > Pt. These results are similar to those observed for [M]–C-(OMe)=CH₂ and [M]–⁺C(OMe)Me system [1], and the discussion described there may also hold here.

Experimental

Infrared spectra, ¹H NMR spectra and ¹³C NMR spectra were recorded as described previously [1]. The starting complexes, $trans-C_6Cl_5M(PPhMe_2)_2Cl$ (M = Ni [2], Pd [1], Pt [1]) were prepared as described previously. Melting points and analytical data for new complexes are summarized in Table 4.

trans- $C_6Cl_5Ni(PPhMe_2)_2C = CHCH_2CH_2O$

Lithiation of 2,3-dihydrofuran was performed in a round-bottomed 100-ml flask fitted with magnetic stirring bar under a nitrogen atmosphere. To a solution of 2,3-dihydrofuran (2 ml, 26.4 mmol) in 40 ml of dry THF was added a 15% n-hexane solution of n-butyllithium (12.4 ml, 20 mmol) at 0°C, and the mixture was stirred at room temperature for 2 h. A solution of *trans*-C₆Cl₅Ni-(PPhMe₂)₂Cl (2.48 g, 4 mmol) in 20 ml of dry THF was added at -20° C. The mixture was allowed to warm to room temperature over a 1 h period, and was kept stirring for 1 h. Cold water containing ammonium chloride was added, and most of organic solvents were removed under reduced pressure. The precipitate in the water phase was extracted with diethyl ether. The ether layer was separated, the solvent was evaporated, and the residue was recrystallized from acetone/methanol to give yellow crystals of *trans*-C₆Cl₅Ni(PPhMe₂)₂C= CHCH₂CH₂O (0.685 g, 26%). This complex was identical with that reported previously [2].

TABLE 4		

Complex		M.p. (°C)	Analyses (found (calcd.) (%))		
м	R or L		С	н	Cl
Ni	C=CHCH2CH2CH2O	136—137 ^a	48.13	4.36	26.91
			(48.59)	(4.38)	(26.56)
Nĭ	CCH ₂ CH ₂ CH ₂ CH ₂ O	139—140 ^a	42.04	4.19	27,40
			(42.23)	(3.94)	(27.70)
Pd	C=CHCH2CH2O	116 ^a	44.59	4.05	25.43
			(44.54)	(3.88)	(25,28)
Pd	CCH ₂ CH ₂ CH ₂ O	153 ^a	38.79	3.73	26.68
			(38.96)	(3.52)	(26.54)
Pd	C=CHCH2CH2CH2O	135—136 ^a	45.05	4.10	25.29
			(45.35)	(4.09)	(24.79)
Pd	CCH2CH2CH2CH2O	137-139 ^a	40.20	3.95	25.73
			(39.76)	(3.71)	(26.08)
Pt	C=CHCH2CH2O	148149 ^a	39.65	3.48	22.45
			(39.54)	(3.45)	(22.44)
Pt	CCH2CH2CH2O	197—198	35.06	3.13	24.13
			(35.08)	(3,17)	(23.90)
Pt	C=CHCH2CH2CH2O	145—147	40.60	3.71	21.90
			(40.34)	(3.64)	(22.05)
Pt	CCH2CH2CH2CH2O	169—171 ^a	36.28	3.62	
			(35.86)	(3.34)	

ANALYTICAL DATA FOR THE NEW ORGANO-NICKEL(II), -PALLADIUM(II) AND -PLATINUM(II) COMPLEXES [M]-R AND [M]-+LClO4- ([M]-= trans-C6Cl₅M(PPhMe₂)₂--)

^a Decomposed.

trans- $C_6Cl_5Pd(PPhMe_2)_2\overleftarrow{C=CHCH_2CH_2O}$

In a similar manner as above, this complex was prepared from trans-C₆Cl₅Pd-(PPhMe₂)₂Cl (2.0 g, 3 mmol) in 61% yield. The crystals became gray in color in several months even at ca. 0°C.

trans- $C_6Cl_5Pt(PPhMe_2)_2\overleftarrow{C=CHCH_2CH_2O}$

In a similar manner as above, this complex was prepared from $trans-C_6Cl_5Pt-(PPhMe_2)_2Cl$ (2.3 g, 3 mmol) in 46% yield.

trans- $C_6Cl_5Ni(PPhMe_2)_2C=CHCH_2CH_2CH_2O$

To a solution of 2,3-dihydropyran (1 ml, 11 mmol) in 20 ml of dry THF was added a 15% n-hexane solution of n-butyllithium (6.2 ml, 10 mmol) at 0°C under a nitrogen atmosphere. The mixture was stirred at room temperature for 1 h, and then trans-C₆Cl₅Ni(PPhMe₂)₂Cl (1.24 g, 2 mmol) dissolved in 10 ml of dry benzene was added at 0°C. The mixture was stirred for 1 h at 0°C, and then for an additional 1 h at room temperature. Cold water containing ammonium chloride was added, and most of the organic solvents were removed under reduced pressure. The aqueous phase which contained a precipitate was extracted with diethyl ether. The ether layer was separated, the solvent was evaporated, and the residue was recrystallized from acetone/methanol to give yellow crystals of trans-C₆Cl₅Ni(PPhMe₂)₂C=CHCH₂CH₂CH₂O (0.702 g, 53%).

121

$trans-C_6Cl_5Pd(PPhMe_2)_2C=CHCH_2CH_2CH_2O$

In a similar manner as above, this complex was prepared from trans-C₆Cl₅Pd-(PPhMe₂)₂Cl (1.0 g, 1.5 mmol) in 71% yield. The crystals also became gray in color in several months at ca. 0°C.

$trans-C_6Cl_5Pt(PPhMe_2)_2C=CHCH_2CH_2CH_2O$

In a similar manner as above, this complex was prepared from trans-C₆Cl₅Pt-(PPhMe₂)₂Cl (1.5 g, 2 mmol) in 29% yield.

trans- $[C_6Cl_5M(PPhMe_2)_2 \{CCH_2CH_2CH_2O\}]ClO_4 (M = Ni, Pd, Pt)$

To a solution of trans-C₆Cl₅M(PPhMe₂)₂C=CHCH₂CH₂O (0.2-1.0 mmol) in diethyl ether (10-30 ml) was added dropwise 60% aqueous perchloric acid (a slight excess). The precipitate which resulted was recrystallized from dichloromethane/n-hexane or from ethanol to give crystals of trans-[C₆Cl₅M-(PPhMe₂)₂ {CCH₂CH₂CH₂O}]ClO₄ in yields of 86% (Ni), 84% (Pd) and 78% (Pt). The nickel complex was identical with that reported previously [2].

trans- $[C_6Cl_5M(PPhMe_2)_2\{CCH_2CH_2CH_2CH_2O\}]ClO_4$, (M = Ni, Pd, Pt)

These complexes were prepared in 61% (Ni), 58% (Pd) and 67% (Pt) yields in similar manner as above using *trans*-C₆Cl₅M(PPhMe₂)₂ \overrightarrow{C} =CHCH₂CH₂CH₂ \overrightarrow{C} . They were recrystallized from ethanol.

References

- 1 M. Wada and Y. Kōyama, J. Organometal. Chem., 201 (1980) 477.
- 2 K. Ogura, M. Wada and R. Okawara, J. Organometal. Chem., 159 (1978) 417.
- 3 M. Wada, S. Kanai, R. Maeda, M. Kinoshita and K. Oguro, Inorg. Chem., 18 (1979) 417.
- 4 F.A. Cotton and C.M. Lukehart, J. Amer. Chem. Soc., 95 (1973) 3552.
- 5 C.H. Game, M. Green, J.R. Moss and F.G.A. Stone, J. Chem. Soc., Dalton, (1974) 351.
- 6 C.P. Casey and R.L. Anderson, J. Amer. Chem. Soc., 96 (1974) 1230.
- 7 C.P. Casey and W.R. Brunsvold, J. Organometal. Chem., 118 (1976) 309.
- 8 H.R. Ward and P.D. Sherman, Jr., J. Amer. Chem. Soc., 90 (1968) 3812.
- 9 M. Meirer, F. Basolo and R.G. Pearson, Inorg. Chem., 8 (1969) 795.